
www.atcomputing.nl

eBook

AWS CloudFormation



www.atcomputing.nl

Table of contents

2

Page 3 - What is AWS Cloudformation?

Page 4 - Templates, stacks and change sets

Page 7 - Designing Templates

Page 13 - Bootstrapping an EC2 instance with User Data

Page 16 - Metadata

Page 22 - Updating EC2 instance with cfn-hup

Page 26 - Updating AWS resources with ChangeSets



www.atcomputing.nl

What is AWS Cloudformation?
AWS CloudFormation provides a common language to describe and provision all

infrastructure resources in your cloud environment. CloudFormation allows you to use a

simple text file to model and provision, in an automated and secure manner, all resources

needed for your applications across all regions and accounts. Therefore this file serves

as the single source of truth for your cloud environment.

Enjoy reading this Ebook.

Vincent Lamers, Linux-consultant

AT Computing

3



www.atcomputing.nl

Templates, stacks and change sets
Cloudformation Templates

A template is a description of the desired end state of the infrastructure. It can be written

in JSON or YAML and contains several sections. The only required section is Resources.

That’s where you put the resources you’re going to use. The following example in YAML

consists of two resources (EC2 instance and an elastic IP). It creates a t2.micro EC2

instance with a keypair (testkey) and an additional EBS volume. The image-id refers to the

AMI that you need. This is region specific. Finally the elastic IP is assigned to the EC2

instance.

4



www.atcomputing.nl

The EIP is attached to the instanceId via Ref. You can use this builtin function to refer to

the logical name of another resource in your template. The value that Ref returns

depends on the resource type. In general is returns the name of the resource, but that’s

not always the case. Here you’ll find a table that lists the values returned by common

resource types.

CloudFormation Stack

In AWS you manage the related resources in a single unit. This is called a stack. A

template describes the resources and when CloudFormation executes the template, it

creates a stack. You create, update or delete collection of resources by creating, updating

and deleting stacks. To prevent unexpected interruptions to the resources in the stack,

you can use ChangeSets to review the changes in the template before executing it.

CloudFormation ChangeSet

A ChangeSet will allow you to see how the changes will impact your running resources.

Rather then updating the resource, CloudFormation may delete and recreate the

resource.  This depends on the nature of the change. Renaming a RDS database instance

for example will recreate an instance. This definitely will cause downtime to your RDS

instance. So prior performing updating on the stack, CloudFormation can create a

ChangeSet that provides visibility to the actually changes that would be taken.

5

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-ref.html


Basic work flow of CloudFormation

When you create a stack, AWS CloudFormation makes underlying service calls to AWS to

provision and configure your resources. Note, that AWS CloudFormation will only perform

actions you are permitted to. For example, to create EC2 instances by using AWS

CloudFormation, you need permission to create instances. Likewise, you need permission

to terminate instances when you delete stacks with instances. To manage permissions,

use AWS Identity and Access Management (IAM).

You declare the calls that AWS CloudFormation makes in your template. Suppose for

example, you have a template that describes an EC2 instance with a t1.micro instance

type. When you use that template to create a stack, AWS CloudFormation calls the

Amazon EC2 create instance API and specifies the instance type as t1.micro. The

following diagram summarizes the AWS CloudFormation work flow for creating stacks.

www.atcomputing.nl

If you specify a template stored locally, an S3 bucket is created by CloudFormation and

will be used for each CloudFormation deployment after that. This is done for each region

you’re working in. Before deploying it, CloudFormation will upload the template to the S3

bucket (in your account). It is also possible to create your own S3 bucket for your

templates. In that case you need to specify the location of your S3 bucket before creating

or updating your stack.

6



www.atcomputing.nl

Designing Templates
CloudFormation Designer

You can write templates locally and upload it to CloudFormation or use the

CloudFormation Designer. If you specify a template file stored locally, AWS

CloudFormation uploads it to an S3 bucket in your AWS account. AWS CloudFormation

creates a bucket for each region in which you upload a template file.

The CloudFormation Designer gives a graphical layout of the template. Basically it is just

drag and drop of the resources. Configuring the individual resources is still done by

editing the template. Let’s just focus on writing templates.

A template consists of several sections. Some of them are optional, like parameters and

mapping. The resource section is the only mandatory part of a template.

Resource section

The resources in this section are declared with a logical name, type and a set of

properties. We can call this an entity. To declare an entity you can use a fixed set of

properties in your template. The Resource type reference describes them in detail,

including what to expect when changing one of them (interruption or replacement). Each

property has a certain type (a string, Boolean etc.) resulting in a key/value notation. In

addition, AWS provides some specific data types. Properties of this type are composed of

their own set of properties. BlockDeviceMappings is an example of that.

When using multiple resources that are related to each other (ref), you don’t have to worry

about ordering. CloudFormation will handle that for you when it executes the template.

7

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_EC2.html


Intrinsic functions

AWS CloudFormation provides several built-in functions that help you manage your

stacks. Use intrinsic functions in your templates to assign values to properties that are

not available until run time. Here is the complete list of the available AWS

CloudFormation functions. Basically these functions provides you functionality to use

logic in your template which eventually gives you more flexibility.

Pseudo parameters

Pseudo parameters in AWS are like environment variables. They are predefined and can

be used in your template. For example, when you need to refer to the region where your

resource is creating, there is a pseudo parameter AWS:Region.

www.atcomputing.nl

8

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html


A complete list of the available pseudo parameters can be found here. To give an idea

how you can make use of pseudo parameters, here is one example of AWS::NoValue.

This pseudo parameter is used to remove the property of an resource. As seen below , an

RDS instance is defined as a resource. In the properties of this resource the if condition

says that if “UseDbSnapshot” is “True” , use the “DBSnapshotname” as

“DBSnapshotIdentifier” property. Otherwise, set the “DBSnapshotIdentifier” property , it

will have “NoValue”.

www.atcomputing.nl

9

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html


www.atcomputing.nl

Here we use the FindInMap function to find a specific value in a map based on the value

of a pseudo parameter. FindInMap accepts three parameters. The first is the RegionMap,

which is the logical name of the map. Next, we call the pseudo parameter AWS::Region.

This is done by the Ref intrinsic function. The last parameter is ‘AMI’ which is the name of

the value pair.

This is a good example of how to use one template across multiple regions in AWS.

In this example the input selection is handled by the CloudFormation via mappings.

Sometimes you need to specify input parameters in your template because there is no

logic for it. For example, when you want to select the instance type.

Mapping section

Mappings are useful to use input values to determine another value. First start with a

mapping section in your template.

10



Parameters section

Parameters enable you to input custom values to your template each time you create or

update a stack.

www.atcomputing.nl

This results in a drop down menu in the cloudformation console. To call the selected

value in the template we can use the Ref intrinsic function again.

There are different types of input parameters. Above is a simple parameter of the type

String with the allowed values. But there are also AWS specific parameter types, for

example AWS::EC2::KeyPair::KeyName. This will call the specific resource in AWS to pull

the correct values. In this case, the drop down menu presents the key pairs in your

account within the region you are deploying a stack.

11



Another interesting parameter type is the SSM parameter. These types correspond to

existing parameters in Systems Manager Parameter Store. You specify a Systems

Manager parameter key as the value of the SSM parameter, and AWS CloudFormation

fetches the latest value from Parameter Store to use for the stack. You can store data

such as passwords, database strings, and license codes as parameter values. You can

store values as plain text or encrypted data.

Outputs section

This section declares output values that you can import into other stacks, return in

response or view in the console. For example, you can output a custom description to the

output section in the CloudFormation console.

www.atcomputing.nl

Now you’ll find in the output section of the Cloudformation console a key value pair of

OutputVariableName – dns name of the EC2 instance.

Writing templates can be challenging when you try to deploy multiple resources which are

all related to each other. For example, an instance with multiple security groups, a second

interface and possibly a role may be attached to it. After deploying your stack from the

command line, you’ll get feedback in the AWS console. When your deployment fails, the

complete stack will be rolled back. The output in the CloudFormation console gives some

usable feedback about the possible cause for this. Also you find a lot of information in

the CloudFormation reference about resource and property types.

12

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html


Bootstrapping an EC2 instance with
User Data
Bootstrapping an EC2 instance with User Data

The cloud-init package is an open-source application built by Canonical that is used to

bootstrap Linux images in a cloud computing environment. EC2 instances contains a

customized version of cloud-init. It enables you to specify actions that should happen to

your instance at boot time. You can pass desired actions to cloud-init through the user

data fields when launching an instance.

You can use AWS CloudFormation to automatically install, configure, and start

applications on Amazon EC2 instances. Doing so enables you to easily duplicate

deployments and update existing installations without connecting directly to the instance,

which can save you a lot of time and effort. UserData is a property of the EC2 instance

resource type.

www.atcomputing.nl

13



A basic bootstrap script runs only on the first boot of the instance and is specifically

useful to make sure your freshly installed instance has the latest updates, required

packages or configurations etc. The UserData properties needs to be Base64 encoded

and starts with #! and the interpreter. It’s basically shell scripting with some limitations.

It’s not interactive so there is no direct feedback. You can redirect your output to an file

like this.

www.atcomputing.nl

This line has to be at the top of your UserData section. This way you have your debug

logging available on the instance you just deployed.

Another drawback of this approach is that the UserData section can become a little

messy after a while. To solve this CloudFormation provides a metadata section where

you can describe any implementation details regarding your resource. Additionally,

Python based helper scripts helps you interact with CloudFormation and access the

specific meta data of a resource declared in the template.

14



www.atcomputing.nl

CloudFormation helper scripts

CloudFormation includes a set of helper scripts (cfn-init, cfn-signal, cfn-get-metadata, and

cfn-hup) that are based on cloud-init. You call these helper scripts from your AWS

CloudFormation templates to install, configure, and update applications on Amazon EC2

instances that are in the same template.

cfn-init

Reads and interprets Metadata to execute AWS::CloudFormation::Init. This script is called

in your UserData section.

cfn-signal

The cfn-signal helper script signals AWS CloudFormation to indicate whether Amazon

EC2 instances have been successfully created or updated. If you install and configure

software applications on instances, you can signal AWS CloudFormation when those

software applications are ready.

cfn-get-metadata

Can be used to retrieve Metadata based on a specific key.

cfn-hup

The cfn-hup helper is a daemon that detects changes in resource Metadata and runs

user-specified actions when a change is detected. This allows you to make configuration

updates on your running Amazon EC2 instances through the UpdateStack API action.

We've already seen this helper script in action in Elastic beanstalk.

15



CloudFormation Metadata

Additional to bootstrap scripts you can include meta data on an EC2 instance. In

comparison to the User Data, where basic shell scripting is used, meta data will follow a

declarative approach to setting up the EC2 instances. Use the AWS::CloudFormation::Init

type to include meta data on an Amazon EC2 instance for the cfn-init helper script. When

your template calls the cfn-init script, the script looks for resource Metadata rooted in the

AWS::CloudFormation::Init Metadata key. The cfn-init command can be found in UserData

property. Basically the previous UserData example will be extended with this extra line:

www.atcomputing.nl

Metadata

More about this later. The Metadata configuration is separated into sections. The

following example shows how to attach Metadata for cfn-init to an Amazon EC2 instance

resource within the template.

16



Metadata is organized into config keys, which you can group into config sets. You can 

specify a config set when you call cfn-init in your template. If you don’t specify a config

set, cfn-init looks for a single config key named config. The cfn-init helper script

processes these configuration sections in the following order: packages, groups, users,

sources, files, commands, and then services. If you require a different order, separate

your sections into different config keys, and then use a config set that specifies the order

in which the config keys should be processed.

www.atcomputing.nl

17



www.atcomputing.nl

Let’s dive into more detail and explore each section keys. Every key contains a set of

(sub) keys. Some of them are required.

Commands key

The only required key in this section is command. This can either be a string or an array.

Commands are processed in alphabetical order by name. Optionally you can specify

environment variables, working directory and test-runs before being executed by cfn-init

(dry run). Additionally you can ignore errors by setting ignoreErrors to true.

With cfn-init -c <configSet> you can call a specific set and force an ordering. Also, using

configSets allows you to combine multiple configSets within your template.

18



Files key

You can use the files key to create files on the EC2 instance. The content can be

specified inline in the template or pulled from a URL.

Creating a symlink can easily done by specify the symlink target in the content key. The

mode key uses the first three digits for symlinks and the last three digits for setting

permissions. To create a symlink, specify 120000. To specify permissions for a file, use

the last three digits, such as 000644

www.atcomputing.nl

Sources key

Instead of declaring the content inside the template, you can use the source key to

specify a specific URL, like GitHub etc. This may also be a S3 bucket. Additionally you can

configure your access keys in the authentication key to successfully pull the content from

S3. You need to configure the type key correctly, and tell CloudFormation about the kind

of authentication. Use "s3"  to authenticate to S3 buckets and "basic"  to authenticate to

GitLab or another site. The type of authentication determines which properties to use.

"s3" requires secretKey, accessorized and bucket. "Basic" on the other hand requires an

url, user name and password.

19



In this example CloudFormation leverages the yum repository to install httpd with the

latest version.

Services key

This key manages the services, but has some extra keys, which you may not expect at

first sight. The following code snippet shows two examples of services managed by

CloudFormation init.

Packages key

This is very similar to configuration management. It allows you to install packages and

specify the version. Version is not required, leaving this blank, CloudFormation assumes

the latest version.

www.atcomputing.nl

Besides declaring the run- and startup-state, you can also manage the files, sources and

packages that are required to run the services. Any changes to this will trigger a restart of

the service.

20



www.atcomputing.nl

User and Group keys

These keys will manage your user and groups during creation.

As already mentioned the Metadata is accessed by cfn-init via UserData. With Fn::Sub you

can substitute the stackname and region pseudo parameters by the actual stackname

and region at run-time. Always update aws-cfn-bootstrap to have to latest version

installed.

In this example cfn-init will look for the meta data of the resource MyInstance within the

CloudFormation template and executes the configuration (search for config by default).

As described above, cfn-init only applies to the bootstrap process of your EC2 instance.

Updating the configuration of your instances can be done with the cfn-hup daemon. cfn-

hup runs user defined actions when a change is detected in the resource Metadata.

21



www.atcomputing.nl

Updating EC2 instance with cfn-hup
Updating EC2 instance with cfn-hup

During the creation process in CloudFormation the cfn-init helper script enables you to

manage the configuration of the AWS resources and their corresponding meta data. This

applies only to the bootstrap of your resource. Through the AWS Management Console,

AWS CloudFormation update-stack command, or the UpdateStack API call you can

update your resources. The stack update can be a simple change to a parameter value or

a more complex update that updates, adds, or removes resources. AWS CloudFormation

updates resource properties, adds new resources, or removes unwanted resources.

These changes may affect the applications running on instances in one of two ways:

Changing a resource in the template may require an update to the configuration of an

instance. For example, if you add a database to the template for scaling, the application

on an instance must be provided with the new connection string, and the instance may

need a restart.

The meta data on the instance may have been updated. For example, you can update the

version of a package that is deployed, add files or packages, or run additional commands.

To facilitate this, CloudFormation provides the cfn-hup helper to reconfigure, restart, or

update an application on an instance as part of the stack update process. The cfn-hup

helper is a daemon that performs the actions specified in the resource's Metadata after it

detects changes in these Metadata. You can use the daemon to make configuration

updates on your running Amazon EC2 instances through UpdateStack.

22



www.atcomputing.nl

The cfn-hup helper must be configured to inspect the correct stack. This configuration is

stored in the cfn-hup configuration file cfn-hup.conf. The cfn-hup helper uses the AWS

credentials from the IAM role to retrieve the meta data. The IAM role is passed to the

instance profile when the Amazon EC2 instance is created.

By default, every 10 minutes cfn-hup checks for changes in each configured resource

path. When a change to the requested meta data is detected, the user action is triggered.

User actions (also known as hooks) are defined in a hook configuration file. Hooks have a

uniquely name. Each hook is configured in a separate section.

To support composition of several applications deploying change notification hooks, cfn-

hup uses a directory /hooks.d which is located in the hooks configuration directory. All

files in this directory are parsed and loaded using the same layout as hooks.conf. Hooks

in /hooks.d with the same name as a hook in hooks.conf, are merged, possibly

overwriting values from hooks.conf.

The hooks configurations are loaded when the cfn-hup daemon starts up, so new hooks

require the daemon to be restarted. A cache of previous Metadata values is stored at

/var/lib/cfn-hup/data/metadata_db (not human readable). This cache can be deleted by

forcing cfn-hup to run all post.add actions again.

23



As described previously, the cfn-hup helper is a small daemon that you can use to

execute hooks when the meta data on a resource are changed. The cfn-init function takes

the packages and files that are defined in the Metadata and installs them on your

Amazon EC2 instance. By combining cfn-hup hooks with the cfn-init script, you can

automatically install new versions of software when you change the Metadata by

updating the stack template. The following example is a hook file that you can install by

using the files section in the AWS::CloudFormation::Init Metadata in your template:

www.atcomputing.nl

In this file, we define a cfn-hup hook that looks for changes to the Metadata, defined in

the MyResource resource (an EC2 instance for example) in the stack and calls cfn-init if

there is a change. When the Metadata changes, cfn-init looks at all the versions of the

packages that are defined for the MyResource resource and, if there was a change,

installs the version from the new template. Because the templates are text files, you can

version-control them just like any other application artifact. By doing so, you can version-

control not only your AWS infrastructure configuration, but also the set of packages

installed on your instances. If you specify a version of a package in the template, cfn-init

attempts to install that version even if a newer version of the package is already installed

on the instance. 

24



www.atcomputing.nl

If you do not specify a version and a version of the package is already installed, cfn-init

does not install a new version; it assumes that you want to keep the existing version.

Updating the configuration of your application or OS is handled by the cfn-hup daemon

running on the instance. Updating your AWS resources in your stack can be done with

Change sets.

25



Updating AWS resources with
Change sets
Updating AWS resources with Change sets

When you need to change your stack resources, this can be done via Change sets.

Change sets allow you to preview how the proposed changes may impact the running

resources. They don’t indicate whether CloudFormation will successfully update a stack.

For example, a Change set is unaware of any insufficient permissions on certain

resources. In such a caste, CloudFormation will attempt to rollback your resources to

their original state.

Here is an overview of how a change set will update your resources.

Creating a Change set can be done by the following command. You can use the same

template as before and just change the parameters for example. This will deploy the

Change set.

www.atcomputing.nl

26



The output can be found in the CloudFormation console or via an API call from the cli. For

example this:

It describes what will be changed, when executing this Changeset. Executing a Changeset

from the command line is quite similar to the previous command.

www.atcomputing.nl

Working with Changesets gives you more control over the potential impact of changes. In

addition, it opens the door to additional control over updates. IAM can be used to control

access to specific CloudFormation functions (UpdateStack, CreateChangeSet etc). You

could allow developers to create and view change sets and restrict execution to more

experienced administrators.

27


